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We propose a Model Order Reduction approach to the uncertainty quantification in Transcranial Magnetic Stimulation and
compare it with a standard non-intrusive PCE approach. Thanks to the new algorithm the computational time is reduced by more
than two orders of magnitude with respect to standard non-intrusive approaches, at comparable accuracy.
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I. INTRODUCTION

THE quantification of uncertainty can play an important
role in Transcranial Magnetic Stimulation (TMS) [1] and

there is an essential need for more effective techniques due to
the increasing model complexity. In most cases, Monte Carlo
methods are too expensive and techniques based on Polynomial
Chaos Expanion (PCE) are favourable.

II. TMS DETERMINISTIC MODELING

In the deterministic modeling phase we use a realistic head
model [2], which contains five different tissues, namely scalp,
skin, cerebrospinal fluid (CSF), grey matter (GM) and white
matter (WM). The excitation coil is a Magstim 70 mm double
coil with 9 windings and is placed above the motor cortex area
M1 (Brodman area 4) at a distance of 4 mm from the skalp.
The coil is approximated by means of 2712 magnetic dipoles
constituted in three layers [3]. The electromagnetic problem
at hand is simplified due to the low electrical conductivities
and moderate excitation frequencies which are in the range of
2−3 kHz so that the secondary magnetic field from the induced
eddy currents can be neglected. In this way, the magnetic field
can be expressed in terms of the magnetic vector potential ac
produced by the excitation coil (bc = ∇ × ac, ∇ · ac = 0).
Considering the current conservation law, this reduces to solve
the following equation at angular frequency ω with Neumann
conditions on the boundary ∂Ω of the spatial domain Ω

∇ · (−σ(r,p)∇ϕ(r,p)) = iω∇ · (σ(r,p)ac(r)), (1)

in which the unknown ϕ(r,p) is the electric potential, ac(r)
is the known magnetic vector potential, and σ(r,p) is the
electric conductivity; the latter can be assumed to be a linear
combination of the n parameters pi, forming vector p

σ(r,p) = σ0(r) +

n∑
i=1

σi(r) pi. (2)

III. TMS STOCHASTIC MODELING

The electrical conductivities of scalp and skin are modelled
as deterministic since they poorly affect the induced electric
field inside the human brain. On the other hand, the conduc-
tivities of CSF, GM, and WM show a wide spread across
individuals and measurements [4] and are then modelled as
uniform distributed random variables with the limits given in
the caption of Fig. 1. In a stochastic analysis, the parameters
forming vector p are assumed to be random variables. Then,
applying PCE, ϕ(r,p) is approximated in the form

ϕ(r,p) =
∑
|α|≤M

φα(r)ψα(p), (3)

in which α are multi-indices of n elements and ψα(p) are
polynomials of degrees less than a chosen M , forming an or-
thonormal basis in the probability space of random variable pi.
In standard non-intrusive PCE approaches, commonly adopted
as the most efficient alternative to Monte Carlo technique,
functions φα(r) are reconstructed from the solutions ϕ(r,p)
of the deterministic problems D for all values of p in a
proper set G. However, even using sparse-grids [5], the set
G becomes very large when the number n of parameters
or the polynomial degree M increases. Thus the number of
deterministic problems to be solved also becomes very large.

A. The Model Order Reduction Approach

Hereinafter the alternative Algorithm 1 is proposed which
constructs a reduced order model tailored to PCE analysis by
solving a much smaller number of deterministic problems with
respect to the non-intrusive approaches. The PCE expansion
of the solution to the original problem is then obtained from
such reduced order model. In the algorithm, at step 1, the
deterministic problem D is numerically approximated, for the
selected values of p, by a discretization method. At step 2 an
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Fig. 1. Mean value and standard deviation of the induced electric field components in the sagittal plane under the excitation coil determined with the MOR
approach. The following values for the conductivity are used (S/m): for scalp 0.34, for skull 0.025, for CSF between 1.432 and 2.148, for grey matter between
0.153 and 0.573, and for white matter between 0.094 and 0.334.

Algorithm 1: MOR-based algorithm
Set k := 0 (dimension of the reduced model)
Set ϑ := 0 (norm of the residual)
Set linear space S0 := ∅
Choose vector p in G
repeat

Set k := k + 1
1 Solve problem D for ϕ(r,p)
2 Generate an orthonormal basis of the linear space Sk

spanned by Sk−1 and ϕ(r,p)
3 Generate reduced order model Rk(p), projecting problem

D onto space Sk

for all q ∈ G do
4 Solve reduced order model Rk(q) and approximate

ϕ(r,q) by ϕ̂(r,q)
5 Estimate the approximation error η

if η > ϑ then
Set ϑ := η

6 Set p := q

until ϑ > ε
7 Determine the PCE expansion of the solution to the reduced

order model Rk(p) and reconstruct the PCE expansion of
ϕ(r,p)

orthonormal basis of space Sk is generated, computing a set
of functions vh(r), with h = 1, . . . , k, spanning all functions
ϕ(r,p) computed at step 1. At step 3 the reduced order model
Rk(p), obtained by projecting (1) and boundary conditions
over the space spanned by functions vh(r), with h = 1, . . . , k,
has the form

˜

Ŝ0 +

n∑
i=1

piŜi

¸

x̂(p) =

˜

R̂0 +

n∑
i=1

piR̂i

¸

in which Ŝi are square matrices of dimension k

Ŝi =

„∫
Ω

∇vh(r) · σi(r)∇vl(r) dr



and R̂i are column vectors of k rows

R̂i =

„

−iω
∫

Ω

∇vh(r) · σi(r)a(r) dr



,

with i = 0, . . . , n. The elements x̂h of vector x̂ allow to
approximate the solution ϕ(r,p) to problem D as (step 4)

ϕ̂(r,p) =

k∑
h=1

vh(r)x̂h(p). (4)

At step 5, η represents the residual when ϕ(r,q) is substituted
by ϕ̂(r,q) in D. At step 6, the value of q in G maximizing
the value of η becomes the candidate p for solving the
deterministic problem D at next step 1. At step 7, a PCE
approach is applied to the reduced order model Rk. From
the PCE expansion of x̂(p), derived in negligible time, the
PCE expansion of ϕ̂(r,p) approximating the PCE of ϕ(r,p)
is obtained from (4).

B. Numerical Results
Each deterministic problem is discretized using approxi-

mately 5 · 105 linear finite elements and the full grid G is
composed by 125 nodes. The MOR-based and the non-intrusive
methods require respectively 80 s using a 2.3 GHz Intel Core
7 PC and 480 min using a 3.1 Ghz Intel Core i5-3450. The
relative difference of both the mean and the standard deviation
of each component of electric field, provided by the two
approaches, is about 0.1% in the maximum norm. The used
PCE order is M = 5.
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